
Micromouse
Brian Beerbower, Abigail DeCamp, Matthew Graber, Clay Wilson

Electrical & Computer Engineering 
Advisor: Sean Carroll

Project Description
The National Robotic Challenge (NRC) hosts an annual 
competition in Marion, OH. The division we competed in is 
known as the micromouse competition. For this 
competition, you have to create a self-contained robot that 
can self navigate to the center of a maze in the shortest 
possible time. The rulebook states we are given 10 minutes 
to explore and navigate a maze set out in a 10x10 grid 
pattern. The quickest run time between the starting block of 
the maze and the center of the maze is recorded for 
scoring. 

Class Diagram

Algorithm

State Machine

Hardware Circuit Diagram

Competition Results

Pathfinding Algorithm:
The robot uses a breadth 
first search algorithm to 
determine the distance each 
square is from the center of 
the maze. It then chooses 
the square that is closest to 
the center and easiest to 
move to.

Microcontroller:

We used an ESP32-S3 microcontroller in our design. The 
ESP32-S3 has 42 programmable general purpose 
input/output (GPIO) pins. We utilized its Vanilla FreeRTOS. 
The code for the microcontroller is in C language.

Sensors:

Our design utilizes two different types of sensors:ultrasonic 
sensors and an inertial measurement unit (IMU).

Our robot uses ultrasonic sensors to detect the 
environment around it. Ultrasonic sensors emit a 
high-frequency sound wave and then detects the waves as 
they get reflected back off an object.

The IMU is a 9 degrees of freedom (9-DoF) device, 
meaning that it is able to measure its orientation and 
motion in three-dimensions with 3 different sensors. The 
IMU incorporates an accelerometer, gyro, and 
magnetometer. Our robot utilizes the accelerometer and 
the gyroscope sensors. We use the accelerometer to 
detect collisions and the gyroscope to help orientation 
during the robot turning. The IMU communicates through 
I2C with the microcontroller.

Motor and Motor Driver:

The motors that we use for our design are brushed DC 
Micro Metal Gearmotors. Geared motors are used to help 
get more torque out of a motor. The motors have a gear 
ratio of 29.86:1. These motors are controlled by pulse-width 
modulation (PWM) signals that are sent from the 
microcontroller through the motor driver. 

The motor driver is based around a dual H-bridge design. 
This allows us to individually control the motors’ speed and 
direction of rotation.

Printed Circuit Board (PCB):
The PCB was designed to decrease the number of wires 
needed and to gain access to all pins on the 
microcontroller. 

Our team attended the 2024 NRC Micromouse competition 
on April 19. Unfortunately, our robot was not able to make 
it to the center of the maze within the modified time of 6 
minutes. The robot had trouble moving grid space to grid 
space particularly in the long hallway in the maze. This 
caused the robot to be off in its calculation of where it was 
in the maze. We believe if allotted the full 10 minutes, our 
robot would have been able to reach the center.

Chassis

Final Product

1. The robot starts off by scanning its environment using 
its ultrasonic sensors and records that data.

2. After it has scanned the environment, the robot runs 
through its algorithms to determine the next course of 
action. 

3. Once it knows where it wants to move to, the robots 
attempts to move to the desired grid space. 
a. This is accomplished using its ultrasonic sensors 

and its inertial measurement unit.

Control Algorithm:
After every move our 
robot makes, it analyzes 
the data it received to 
ensure that it moved 
correctly, and will 
attempt to correct itself if 
it didn’t move correctly

Movement Algorithm:
The robot uses distance sensors to judge how far it has 
moved. It measures how far it is from walls on the sides to 
move straight, look for gaps in the wall to see when it should 
stop, and uses a gyroscopic sensor to turn accurately.
Error Correction:
If the robot ever takes too long to do something, the robot 
will realize that it’s caught on something and adjust itself 
accordingly. Additionally, if it ever sees and impossible maze 
state, it will try to correct it, but if it is unable to it will simply 
clear its memory of the maze and begin learning again.

PCB


