

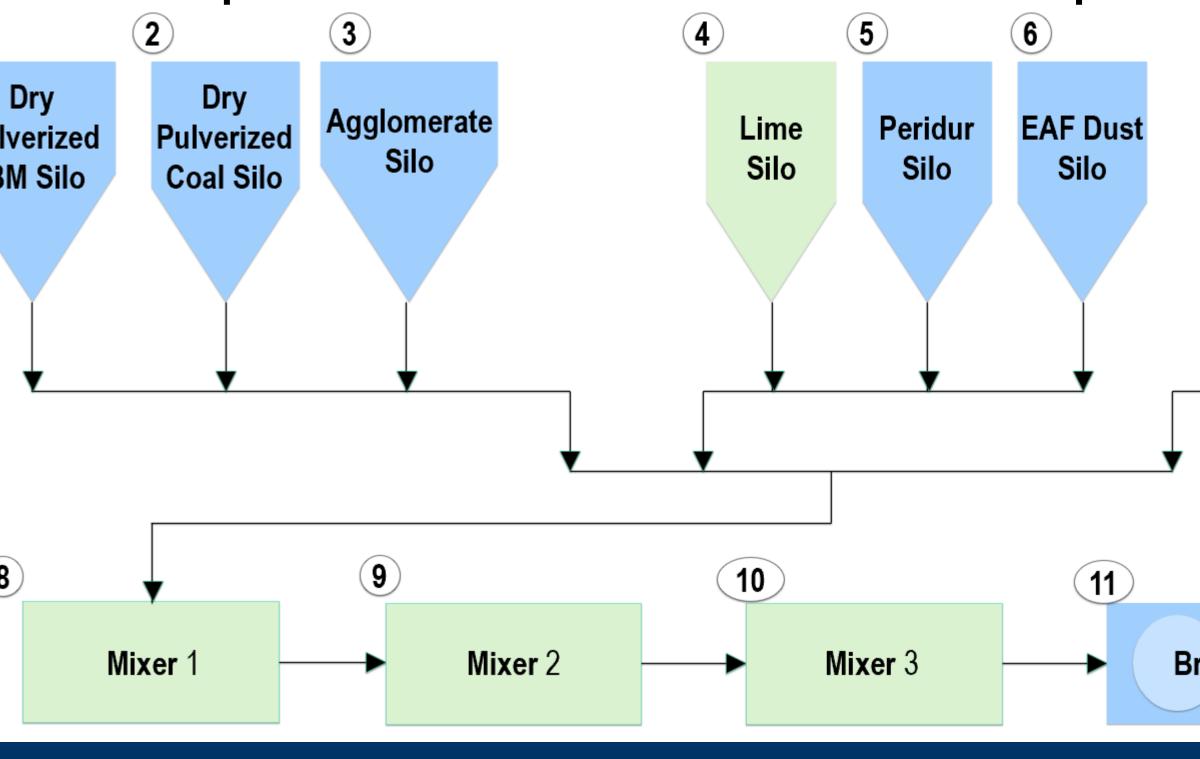
Briquette Feed Compressibility Optimization Alex Davidson, Jake Doyle, Annamarie Hartman

Introduction

The Iron Dynamics Department of Steel Dynamics produces briquettes of "green" unreduced iron to later be reduced and further melted to nearly pure molten iron.

Through identifying the lime types and composition that optimizes the briquette feed-mixture compressibility, we hope to an increase in the process achieve throughput capabilities, thus increasing the profitability and efficacy of the iron making process.

Methods


- Generate mixtures of varying lime types
 - o Hydrated lime
 - o Dolomitic lime
 - o Calcium carbonate
- Mix dry materials in the mixer for 5 minutes
- Heat binder & water to 90 F \bullet
- Add binder and water
- Mix for five additional minutes
- Perform compression testing
 - 100 cm³ sample
 - 57 lbs. force applied

	Characteri	zation of composi	
	Dry Pulverized	Dry Pulverized	
	IBM Silo	Coal Silo	
	v	•	
	(8)	•	
	N	Aixer 1	
	Lime ⁻	Types:	
●	Hydrated L		
•	Dolomitic L		
•	Calcium Ca		
Γ	Compress	ibility:	
ŀ	50% Dol	-	
	50% Ca	CO ₃	
	Immediat	e Use	
ſ	Economics:		
	50% Hydrated		
	50% Ca	CO ₃	
	Recomme	ended:	
	75% Hyd	rated	
	25% Ca	CO ₃	
	Immediat	e Use	

Chemical Engineering Advisors: Dr. Jacob Borden

Objective

binder-lime molecular interactions and opti ition effects on cost and mixture compressi

(C)

Results

Lime Composition	Pressure (psi)	Δρ _i (lb/ft ³ psi)	$\Delta \rho_{aged}$	
100% H	72.6	0.28	0.10	
100% D	72.6	0.34	0.24	
50% D 50% H	72.6	0.27	0.20	
50% C 50% H	72.6	0.33	0.26	
50% C 50% D	72.6	0.41	0.30	
*Mixes were aged 6 days prior to retesting				

winkes were aged o days prior to relesting

timization ibility.	of lime	•
	Binder Silo	•
		•
		Li
riquetter –		
(lb/ft ³ psi)	Δρ _{aged}	Th co
0.28	0.10 0.24	an
11,144		

E	conomics
	Lime Costs:

- Hydrated Lime (H) • \$220/ton
- Dolomitic Lime (D) • \$420/ton
- Calcium Carbonate (C) • \$180/ton

Lime Composition	Cost (\$/ton)	Est. C
100% H	220	1.73
100% D	420	3.3
50% D 50% H	320	2.52
50% C 50% H	200	1.58
50% C 50% D	300	2.36

Conclusions

yielding mixture the ompressibility is not feasible economically and would require too drastic a change to the chemical process.

As such, it is recommended to alter mix conditions from the current 100% hydrated lime to a mixture of 75% hydrated lime and 25% calcium carbonate at the current ratio of 1.30 weight percent of the total feed mixture. This would reduce the lime cost from \$220/ton to \$210/ton while increasing the compressibility of the feed mixture, improving briquetting rate and quality.

Acknowledgements

We would like to thank our SDI project Lachlan Richards, mentors, Crutcher, and Stephanie Anderson for their support throughout the process.

